Publications
-
Rotational dynamics of a disk in a thin film of weakly nematic fluid subject to linear friction [link]
-
Maximized response by structural optimization of soft elastic composite systems [link]L. Fischer and A. M. Menzel
PNAS Nexus 3, pgae353 (2024)
-
Hydrodynamics of a disk in a thin film of weakly nematic fluid subject to linear friction [link]A. Daddi-Moussa-Ider, E. Tjhung, T. Richter, and A. M. Menzel
J. Phys.: Condens. Matter 36, 445101 (2024)
-
Thin elastic films and membranes under rectangular confinement [link]A. R. Sprenger, H. Reinken, T. Richter, and A. M. Menzel
Europhys. Lett. 147, 17002 (2024)
-
Internal sites of actuation and activation in thin elastic films and membranes of finite thickness [link]T. Lutz, A. M. Menzel, and A. Daddi-Moussa-Ider
Phys. Rev. E 109, 054802 (2024)
-
Vortex pattern stabilization in thin films resulting from shear thickening of active suspensions [link]H. Reinken and A. M. Menzel
Phys. Rev. Lett. 132, 138301 (2024)
-
Magnetic elastomers as specific soft actuators — predicting particular modes of deformation from selected configurations of magnetizable inclusions [link]L. Fischer and A. M. Menzel
J. Magn. Magn. Mater. 591, 171695 (2024)
-
Microswimming under a wedge-shaped confinement [link]A. R. Sprenger and A. M. Menzel
Phys. Fluids 35, 123119 (2023)
(Editor's Pick)
-
Stochastic motion under nonlinear friction representing shear thinning [link]T. Lequy and A. M. Menzel
Phys. Rev. E 108, 064606 (2023)
-
Density functional approach to elastic properties of three-dimensional dipole-spring models for magnetic gels [link]S. Goh, A. M. Menzel, R. Wittmann, and H. Löwen
J. Chem. Phys. 158, 054909 (2023)
-
Digital Media versus Blackboard and Chalk — Online and Hybrid Teaching in Theoretical Physics [link]C. D. Deters and A. M. Menzel
Lessons Learned 2-2, 8 (2022)
-
Circular motion subject to external alignment under active driving: Nonlinear dynamics and the circle map [link]A. M. Menzel
Phys. Rev. E 106, 064603 (2022)
-
Effect of boundaries on displacements and motion in two-dimensional fluid or elastic films and membranes [link]T. Lutz, S. K. Richter, and A. M. Menzel
Phys. Rev. E 106, 054609 (2022)
-
Variations in the thermal conductivity of magnetosensitive elastomers by magnetically induced internal restructuring [link]G. J. L. Jäger, L. Fischer, T. Lutz, and A. M. Menzel
J. Phys.: Condens. Matter 34, 485101 (2022)
-
When low-order expansions fail and all higher-order contributions matter—basic example of the mean squared displacement for Brownian motion [link]A. M. Menzel
Eur. Phys. J. E 45, 77 (2022)
-
Group theoretical approach to elasticity under constraints and predeformations [link]S. Goh, H. Löwen, and A. M. Menzel
Phys. Rev. B 106, L100101 (2022)
-
Statistics for an object actively driven by spontaneous symmetry breaking into reversible directions [link]A. M. Menzel
J. Chem. Phys. 157, 011102 (2022)
(Featured Communication)
-
Elastic deformations of spherical core-shell systems under an equatorial load [link]J. Kolker, L. Fischer, A. M. Menzel, and H. Löwen
J. Elast. 150, 77 (2022)
-
Mediated interactions between rigid inclusions in two-dimensional elastic or fluid films [link]S. K. Richter and A. M. Menzel
Phys. Rev. E 105, 014609 (2022)
-
Steady azimuthal flow field induced by a rotating sphere near a rigid disk or inside a gap between two coaxially positioned rigid disks [link]A. Daddi-Moussa-Ider, A. R. Sprenger, T. Richter, H. Löwen, and A. M. Menzel
Phys. Fluids 33, 082011 (2021)
(Editor's Pick)
-
Rotating spherical particle in a continuous viscoelastic medium — A microrheological example situation [link]S. K. Richter, C. D. Deters, and A. M. Menzel
Europhys. Lett. 134, 68002 (2021)
-
Stimuli-responsive twist actuators made from soft elastic composite materials—linking mesoscopic and macroscopic descriptions [link]A. M. Menzel
J. Chem. Phys. 154, 204902 (2021)
-
Macroscopic behavior of materials composed of two elastic media [link]H. Pleiner, A. M. Menzel, and H. R. Brand
Phys. Rev. B 103, 174304 (2021)
-
Magnetically induced elastic deformations in model systems of magnetic gels and elastomers containing particles of mixed size [link]L. Fischer and A. M. Menzel
Smart Mater. Struct. 30, 014003 (2021)
-
Modeling and theoretical description of magnetic hybrid materials — bridging from meso- to macro-scales [link]A. M. Menzel and H. Löwen
Phys. Sci. Rev. 2020, 20190088 (2020)
-
Dynamical Crystallites of Active Chiral Particles [link]Z.-F. Huang, A. M. Menzel, and H. Löwen
Phys. Rev. Lett. 125, 218002 (2020)
-
Axisymmetric Stokes flow due to a point-force singularity acting between two coaxially positioned rigid no-slip disks [link]A. Daddi-Moussa-Ider, A. R. Sprenger, Y. Amarouchene, T. Salez, C. Schönecker, T. Richter, H. Löwen, and A. M. Menzel
J. Fluid Mech. 904, A34 (2020)
-
Towards an analytical description of active microswimmers in clean and in surfactant-covered drops [link]A. R. Sprenger, V. A. Shaik, A. M. Ardekani, M. Lisicki, A. J. T. M. Mathijssen, F. Guzmán-Lastra, H. Löwen, A. M. Menzel, and A. Daddi-Moussa-Ider
Eur. Phys. J. E 43, 58 (2020)
-
Towards a soft magnetoelastic twist actuator [link]L. Fischer and A. M. Menzel
Phys. Rev. Research 2, 023383 (2020)
-
Dynamics of a microswimmer–microplatelet composite [link]A. Daddi-Moussa-Ider, M. Lisicki, H. Löwen, and A. M. Menzel
Phys. Fluids 32, 021902 (2020)
-
Frequency-dependent higher-order Stokes singularities near a planar elastic boundary: implications for the hydrodynamics of an active microswimmer near an elastic interface [link]A. Daddi-Moussa-Ider, C. Kurzthaler, C. Hoell, A. Zöttl, M. Mirzakhanloo, M.-R. Alam, A. M. Menzel, H. Löwen, and S. Gekle
Phys. Rev. E 100, 032610 (2019)
-
Magnetostriction in magnetic gels and elastomers as a function of the internal structure and particle distribution [link]L. Fischer and A. M. Menzel
J. Chem. Phys. 151, 114906 (2019)
-
Multi-species dynamical density functional theory for microswimmers: derivation, orientational ordering, trapping potentials, and shear cells [link]C. Hoell, H. Löwen, and A. M. Menzel
J. Chem. Phys. 151, 064902 (2019)
-
Theory of active particle penetration through a planar elastic membrane [link]A. Daddi-Moussa-Ider, B. Liebchen, A. M. Menzel, and H. Löwen
New J. Phys. 21, 083014 (2019)
-
Creeping motion of a solid particle inside a spherical elastic cavity: II. Asymmetric motion [link]C. Hoell, H. Löwen, A. M. Menzel, and A. Daddi-Moussa-Ider
Eur. Phys. J. E 42, 89 (2019)
-
Classical density functional theory for a two-dimensional isotropic ferrogel model with labeled particles [link]S. Goh, R. Wittmann, A. M. Menzel, and H. Löwen
Phys. Rev. E 100, 012605 (2019)
-
Displacement field around a rigid sphere in a compressible elastic environment, corresponding higher-order Faxén relations, as well as higher-order displaceability and rotateability matrices [link]M. Puljiz and A. M. Menzel
Phys. Rev. E 99, 053002 (2019)
-
Membrane penetration and trapping of an active particle [link]A. Daddi-Moussa-Ider, S. Goh, B. Liebchen, C. Hoell, A. J. T. M. Mathijssen, F. Guzmán-Lastra, C. Scholz, A. M. Menzel, and H. Löwen
J. Chem. Phys. 150, 064906 (2019)
-
Mesoscopic characterization of magnetoelastic hybrid materials: magnetic gels and elastomers, their particle-scale description, and scale-bridging links [link]A. M. Menzel
Arch. Appl. Mech. 89, 17 (2019)
(Review)
-
Memory-based mediated interactions between rigid particulate inclusions in viscoelastic environments [link]M. Puljiz and A. M. Menzel
Phys. Rev. E 99, 012601 (2019)
-
Particle-scale statistical theory for hydrodynamically induced polar ordering in microswimmer suspensions [link]C. Hoell, H. Löwen, and A. M. Menzel
J. Chem. Phys. 149, 144902 (2018)
-
Dynamics of a simple model microswimmer in an anisotropic fluid: implications for alignment behavior and active transport in a nematic liquid crystal [link]A. Daddi-Moussa-Ider and A. M. Menzel
Phys. Rev. Fluids 3, 094102 (2018)
-
Binary pusher–puller mixtures of active microswimmers and their collective behavior [link]G. Pessot, H. Löwen, and A. M. Menzel
Mol. Phys. 116, 3401 (2018)
-
Reversible magnetomechanical collapse: virtual touching and detachment of rigid inclusions in a soft elastic matrix [link]
-
Hydrodynamic coupling and rotational mobilities near planar elastic membranes [link]A. Daddi-Moussa-Ider, M. Lisicki, S. Gekle, A. M. Menzel, and H. Löwen
J. Chem. Phys. 149, 014901 (2018)
-
State diagram of a three-sphere microswimmer in a channel [link]A. Daddi-Moussa-Ider, M. Lisicki, A. J. T. M. Mathijssen, C. Hoell, S. Goh, J. Bławzdziewicz, A. M. Menzel, and H. Löwen
J. Phys.: Condens. Matter 30, 254004 (2018)
-
Dynamics in a one-dimensional ferrogel model: relaxation, pairing, shock-wave propagation [link]S. Goh, A. M. Menzel, and H. Löwen
Phys. Chem. Chem. Phys. 20, 15037 (2018)
-
Tunable dynamic moduli of magnetic elastomers: from characterization by x-ray micro-computed tomography to mesoscopic modeling [link]G. Pessot, M. Schümann, T. Gundermann, S. Odenbach, H. Löwen, and A. M. Menzel
J. Phys.: Condens. Matter 30, 125101 (2018)
-
Dynamical density functional theory for circle swimmers [link]C. Hoell, H. Löwen, and A. M. Menzel
New J. Phys. 19, 125004 (2017)
-
A density functional approach to ferrogels [link]P. Cremer, M. Heinen, A. M. Menzel, and H. Löwen
J. Phys.: Condens. Matter 29, 275102 (2017)
-
Forces and torques on rigid inclusions in an elastic environment: resulting matrix-mediated interactions, displacements, and rotations [link]M. Puljiz and A. M. Menzel
Phys. Rev. E 95, 053002 (2017)
-
Force-induced elastic matrix-mediated interactions in the presence of a rigid wall [link]A. M. Menzel
Soft Matter 13, 3373 (2017)
-
Statistical analysis of magnetically soft particles in magnetorheological elastomers [link]T. Gundermann, P. Cremer, H. Löwen, A. M. Menzel, and S. Odenbach
Smart Mater. Struct. 26, 045012 (2017)
-
Forces on rigid inclusions in elastic media and resulting matrix-mediated interactions [link]M. Puljiz, S. Huang, G. K. Auernhammer, and A. M. Menzel
Phys. Rev. Lett. 117, 238003 (2016)
(Editors' Suggestion)
-
Superelastic stress-strain behavior in ferrogels with different types of magneto-elastic coupling [link]P. Cremer, H. Löwen, and A. M. Menzel
Phys. Chem. Chem. Phys. 18, 26670 (2016)
-
Dynamic elastic moduli in magnetic gels: normal modes and linear response [link]G. Pessot, H. Löwen, and A. M. Menzel
J. Chem. Phys. 145, 104904 (2016)
-
Hydrodynamic description of elastic or viscoelastic composite materials: relative strains as macroscopic variables [link]A. M. Menzel
Phys. Rev. E 94, 023003 (2016)
-
On the way of classifying new states of active matter [link]A. M. Menzel
New J. Phys. 18, 071001 (2016)
(Invited Perspective)
-
Thermophoretically induced large-scale deformations around microscopic heat centers [link]M. Puljiz, M. Orlishausen, W. Köhler, and A. M. Menzel
J. Chem. Phys. 144, 184903 (2016)
-
Dynamics of a linear magnetic "microswimmer molecule" [link]S. Babel, H. Löwen, and A. M. Menzel
Europhys. Lett. 113, 58003 (2016)
-
Getting drowned in a swirl: Deformable bead-spring model microswimmers in external flow fields [link]N. Küchler, H. Löwen, and A. M. Menzel
Phys. Rev. E 93, 022610 (2016)
-
Dynamical density functional theory for microswimmers [link]A. M. Menzel, A. Saha, C. Hoell, and H. Löwen
J. Chem. Phys. 144, 024115 (2016)
-
Buckling of paramagnetic chains in soft gels [link]S. Huang, G. Pessot, P. Cremer, R. Weeber, C. Holm, J. Nowak, S. Odenbach, A. M. Menzel, and G. K. Auernhammer
Soft Matter 12, 228 (2016)
-
Velocity and displacement statistics in a stochastic model of nonlinear friction showing bounded particle speed [link]A. M. Menzel
Phys. Rev. E 92, 052302 (2015)
-
Tailoring superelasticity of soft magnetic materials [link]P. Cremer, H. Löwen, and A. M. Menzel
Appl. Phys. Lett. 107, 171903 (2015)
-
Towards a scale-bridging description of ferrogels and magnetic elastomers [link]G. Pessot, R. Weeber, C. Holm, H. Löwen, and A. M. Menzel
J. Phys.: Condens. Matter 27, 325105 (2015)
-
Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles [link]T. Speck, A. M. Menzel, J. Bialké, and H. Löwen
J. Chem. Phys. 142, 224109 (2015)
-
Focusing by blocking: Repeatedly generating central density peaks in self-propelled particle systems by exploiting diffusive processes [link]A. M. Menzel
Europhys. Lett. 110, 38005 (2015)
-
Tuned, driven, and active soft matter [link]A. M. Menzel
Phys. Rep. 554, 1 (2015)
(Review)
-
Bridging from particle to macroscopic scales in uniaxial magnetic gels [link]A. M. Menzel
J. Chem. Phys. 141, 194907 (2014)
-
Tunable dynamic response of magnetic gels: impact of structural properties and magnetic fields [link]M. Tarama, P. Cremer, D. Y. Borin, S. Odenbach, H. Löwen, and A. M. Menzel
Phys. Rev. E 90, 042311 (2014)
-
Structural control of elastic moduli in ferrogels and the importance of non-affine deformations [link]G. Pessot, P. Cremer, D. Y. Borin, S. Odenbach, H. Löwen, and A. M. Menzel
J. Chem. Phys. 141, 124904 (2014)
-
Magnetomechanical response of bilayered magnetic elastomers [link]E. Allahyarov, A. M. Menzel, L. Zhu, and H. Löwen
Smart Mater. Struct. 23, 115004 (2014)
-
Deformable microswimmer in a swirl: capturing and scattering dynamics [link]M. Tarama, A. M. Menzel, and H. Löwen
Phys. Rev. E 90, 032907 (2014)
-
Effective Cahn-Hilliard equation for the phase separation of active Brownian particles [link]T. Speck, J. Bialké, A. M. Menzel, and H. Löwen
Phys. Rev. Lett. 112, 218304 (2014)
-
Active crystals and their stability [link]A. M. Menzel, T. Ohta, and H. Löwen
Phys. Rev. E 89, 022301 (2014)
(Editors' Suggestion)
-
Individual and collective dynamics of self-propelled soft particles [link]M. Tarama, Y. Itino, A. M. Menzel, and T. Ohta
Eur. Phys. J. Special Topics 223, 121 (2014)
-
Unidirectional laning and migrating cluster crystals in confined self-propelled particle systems [link]A. M. Menzel
J. Phys.: Condens. Matter 25, 505103 (2013)
-
Differently shaped hard body colloids in confinement: from passive to active particles [link]H. H. Wensink, H. Löwen, M. Marechal, A. Härtel, R. Wittkowski, U. Zimmermann, A. Kaiser, and A. M. Menzel
Eur. Phys. J. Special Topics 222, 3023 (2013)
(Review)
-
Dynamics of a deformable active particle under shear flow [link]M. Tarama, A. M. Menzel, B. ten Hagen, R. Wittkowski, T. Ohta, and H. Löwen
J. Chem. Phys. 139, 104906 (2013)
-
Hardening transition in a one-dimensional model for ferrogels [link]M. A. Annunziata, A. M. Menzel, and H. Löwen
J. Chem. Phys. 138, 204906 (2013)
-
Traveling and resting crystals in active systems [link]A. M. Menzel and H. Löwen
Phys. Rev. Lett. 110, 055702 (2013)
-
Soft deformable self-propelled particles [link]A. M. Menzel and T. Ohta
Europhys. Lett. 99, 58001 (2012)
-
Collective motion of binary self-propelled particle mixtures [link]A. M. Menzel
Phys. Rev. E 85, 021912 (2012)
-
Density and concentration field description of nonperiodic structures [link]A. M. Menzel
Phys. Rev. E 84, 051505 (2011)
-
Effect of Coulombic friction on spatial displacement statistics [link]A. M. Menzel and N. Goldenfeld
Phys. Rev. E 84, 011122 (2011)
-
Response of prestretched nematic elastomers to external fields [link]A. M. Menzel, H. Pleiner, and H. R. Brand
Eur. Phys. J. E 30, 371 (2009)
-
On the nonlinear stress-strain behavior of nematic elastomers — materials of two coupled preferred directions [link]A. M. Menzel, H. Pleiner, and H. R. Brand
J. Appl. Phys. 105, 013503 (2009)
-
Instabilities in nematic elastomers in external electric and magnetic fields [link]A. M. Menzel and H. R. Brand
Eur. Phys. J. E 26, 235 (2008)
-
Highly ordered patterns of parabolic focal conics in lamellar lyotropic systems [link]C. Wolf and A. M. Menzel
J. Phys. Chem. B 112, 5007 (2008)
-
Nonlinear relative rotations in liquid crystalline elastomers [link]A. M. Menzel, H. Pleiner, and H. R. Brand
J. Chem. Phys. 126, 234901 (2007)
-
Cholesteric elastomers in external mechanical and electric fields [link]A. M. Menzel and H. R. Brand
Phys. Rev. E 75, 011707 (2007)
-
Rotatoelectricity in cholesteric side-chain liquid single crystal elastomers [link]A. M. Menzel and H. R. Brand
J. Chem. Phys. 125, 194704 (2006)